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problems, one of them to obtain minimizing the numerator and the other maximizing the 
denominator. Illustrative examples are presented to clarify the obtained results. 
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1. Introduction 
 

Fractional programming problem is that in which the objective function is the ratio of the 

numerator and denominator. These types of problems have attracted considerable research 

and interest. Since these are useful in production planning, financial and corporate planning, 

health care and hospital planning etc.  

There are different solution algorithms for determining the optimal solution of particular 

kinds of fractional programming problems. For example, Charnes and Cooper [2], Isbell and 

Marlow [6], Martos [8] and Wolf [13] solves linear fractional programming. Integer linear 

fractional programming has been solved by Rajendra [10], Seshan and Tibekar [11], Chandra 

and Chandramoham [1]. Swarup [12] gives an algorithm for solving quadratic fractional 

programming. The case where the restrictions are linear and the objective function is the 

quotient of a convex function with a concave function is solved by Mangasarian [7] using 

Frank and Wolf`s algorithm [5]. Dinkelbach [3] also considered the same objective over a 

convex feasible set. He solved this problem by solving a sequence of non-linear convex 

programming problems. Finally, E. A. Youness [14] presented a two dimensional approach 

for finding solutions of nonlinear fractional programming problems. 

 

Multi-objective optimization problems are a class of optimization problems in which several 

different objective functions have to be considered simultaneously. Usually, there is no 

solution optimizing simultaneously all the several objective functions. Therefore, we search 

the so-called efficient solutions. When all the objective functions and the constraint functions 
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forming the feasible region are linear, then the multi-objective optimization problem is called 

linear. If at least one of the objective or the constraint functions is nonlinear, the problem is 

called a nonlinear multi-objective optimization problem. The multi-objective optimization 

problem is convex if all the objective functions and the feasible region are convex [9]. 

 In 1989 Ebrahim. A. Youness [4] presented an approach for solving multi-objective 

fractional programming problems. 

 

In this paper, a new approach for finding all efficient solutions for multi-objective fractional 

programming problems is presented. Illustrative examples are presented to clarify the 

obtained results. 

 

2. Problem formulation 
 

 Consider the following multi-objective programming problem: 

  
1 .

: 0, 1,2,..., ,

( )

( )
Min

P s t

nM X R g x r m
r

x

x









    


 

where 1 2( ) ( , ,..., ),  ( ), 1,2,...,m rx g x r m     are convex functions and 1 2( ) ( , ,..., )mx     

,  ( ) 0x  is a concave function, and ,  nM R M    is the constraint set. 

 

Definition: *x M is said to be an efficient solution for 
1P if there is no x M such that 

* *

* *
,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x x x

x x x x

   

   
  . 

 

To find the efficient solution of problem 
1P , formulate two auxiliary problems 

2P and 
3P , 

then construct the efficient solution of 
1P from the efficient solutions of 

2P and 
3P . 

 

Now, consider the auxiliary problems 
2P and 

3P as following: 

     
2 3

 ( )  ( )

.    ,  .      

: 0, 1,2,..., : 0, 1,2,...,

Min x Max x

P s t P s t

n nM X R g x r m M X R g x r m
r r

 

 
 
 
 
 
        
 

 

Let the set of all efficient solutions of 
2P and 

3P  is *

1M  and *

2M  respectively defined as: 

* *

1 2{ : },  { : }M x x M M x x M     

 

3. Main results 

  
The basic idea of this study is based on constructing the set of all efficient solution 

* * *{ : }M x x M   for the problem 
1P from the efficient solutions *

1M  and *

2M   for the two 

auxiliary problems 
2P and 

3P  as following: 
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Lemma 3.1. If * *

1 2M M ,  then  x  is the efficient solution of  
1P , * * * *

1 2 1M M M M    . 

Proof.  

Since * * *

1 1 2,  x M M M  ,then *

2x M . Thus 

( ) ( ) ( )                     (1)x x x x M       

Since x  is the efficient solution of 
2P , then 

( ) ( )                                  (2)x x x M     

Multiple (2) on ( )x , we get 

( ). (x) ( ). (x)

( ) ( )
                                               (3)

(x) (x)

x x

x x

   

 

 




 

From (1), we get 

1 1
                                                (4)

(x) (x) 
  

From (4) on (3), we get 

( ) ( ) ( )

(x) (x) (x)

  

x x x  

  
 

 

So,  

( ) ( )

(x) (x)

  

x x 

 


 

Which mean that the efficient solution for 
1P is * *

1 2 ,  *x x M M M   . 

 

Lemma 3.2. If * *

2 1M M ,  then  x  is the efficient solution of  
1P , * * * *

1 2 1M M M M    . 

Proof.  

Since * * *

2 2 1,  x M M M  ,then *

1x M . Thus 

( ) ( ) ( )                       (1)x x x x M       

Then  

( ) ( )                                                 (2)x x   

Multiple (2) on ( )x , we get 

( ). ( ) ( ). ( )

( ) ( )
                                               (3)

( ) ( )

x x x x

x x

x x

   

 

 




 

 

Since x  is the efficient solution of 
3P , then 

( ) ( ) ( )                            

1 1 1
                                  (4)

( ) ( ) ( )

x x x x M

x x x

  

  

   

 
 

 

From (1), (4) on (3), we get 
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( ) ( ) ( ) ( )

(x) (x) (x) (x)

  

x x x x   

   
  

 

So,  

( ) ( )

(x) (x)

  

x x 

 


 

Which mean that the efficient solution for 
1P is * *

1 2 ,  *x x M M M   . 

 

Lemma 3.3. If * *

1 2M M  ,  then the efficient solution of  
1P  is 

* *x M ,

* * * *

1 2,  x M x M  , * * *

1 2M M M   . 

Proof.  

Since * * * *

1 2,  x M x M  , then  

* *( ) ( )                                       (1)x x x M     

* *

*

( ) ( )                                    

1 1
                                                  (2)

( ) ( )

x x x M

x x

 

 

  


 

Multiple (2) on ( )x , we get 

*

( ) ( )
                                                    (3)

( ) (x )

  

x x

x

 

 


 

 From (1) on (3), we get 
*

* *

( ) ( ) (x )
                                      (4)

( ) (x ) (x )

  

x x

x

  

  
 

 

So,  
*

*

*

*

( ) (x )
1 

( ) (x )

(x )
( ) ( )                               

(x )

  

x

x

x x

 

 


 



 

   

Which mean that the efficient solution for 
1P is * * * *

1 2 ,  *,  *x x M M M M   . 

 

Lemma 3.4. Let M is convex set and ( )x  convex on M , then if x  is efficient solution 

for 
1P , then x  is efficient solution for 

2P   . 

Proof. 

Let x  not efficient solution for 
2P , then there exist **x M  such that **( ) ( ),  x x   

**( ) ( )x x  . 

Since M  is a convex set, then from convexity there exist x M , such that 
**(1 )  ,  0 1x x x        

Let ( )x  is a convex set, then from convexity, we get 
**( ) (1 ) ( )  ( )x x x       , 
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at 0  , we get 

( ) ( )x x   

Which contradict the assumption, hence x  efficient solution for 
2P . 

 

Lemma 3.5. Let M is convex set and ( )x  concave on M , then if x  is efficient solution 

for 
1P , then x  is efficient solution for 

3P   . 

Proof. 

Let x  not efficient solution for 
3P , then there exist **x M  such that **( ) ( ),  x x   

**( ) ( )x x  . 

Since M  is a convex set, then from convexity there exist x M , such that 
**(1 )  ,  0 1x x x        

Let ( )x  is a convex set, then from convexity, we get 
**( ) (1 ) ( )  ( )x x x       , 

at 0  , we get 

( ) ( )x x   

Which contradict the assumption, hence x  efficient solution for 
3P . 

 

Lemma 3.6. Let M is convex set and ( )x  convex on M , ( )x  concave on M , then the 

efficient solution x  for 
2P  and 

3P   is efficient solution for 
1P   . 

Proof. 

Let x  be an efficient solution for 
2P  and 

3P  and not efficient solution for 
1P , then there 

exist **x M  such that 
** **

** **

( ) ( ) ( ) ( )
,   

( ) ( ) ( ) ( )

x x x x

x x x x

   

   
   

Since x  is an efficient solution for 
2P  and 

3P   , then  

**( ) ( )                                                (1)x x   

**

**

( ) ( )

                                             (2)1 1

( ) ( )

x x

x x

 

 




 

Multiple (1) on **( )x ,we get 
** ** **

**

** **

( ). ( ) ( ) ( )

( ) ( )
                                            (3)

( ) ( )

x x x x

x x

x x

   

 

 




 

From (2) on (3), we get 
**

** **

( ) ( ) ( )
  

( ) ( ) ( )

x x x

x x x

  

  
   

So,  

 
**

**

( ) ( )
  

( ) ( )

x x

x x

 

 
  

Which contradict the assumption, hence x is efficient solution for 
1P . 
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Lemma 3.7. Let M is convex set and ( )x  convex on M , then if *x  is efficient solution 

for 
1P , then x  and x  are efficient solutions for 

2P and 
3P  respectively  . 

Proof. 

Since * * * * *

1 2,  x M M M M   , then   
*

*

( )
( ) ( )

( )

x
x x

x


 


   

Let x  not efficient solution for 
2P , then there exist **x M  such that **( ) ( ),  x x   

**( ) ( )x x  . 

Since M  is a convex set, then from convexity there exist x M , such that 
**(1 )  ,  0 1x x x        

Let ( )x  is a convex set, then from convexity, we get 
**( ) (1 ) ( )  ( )x x x       , 

at 0  , we get 

( ) ( )x x   

Which contradict the assumption, hence x  efficient solution for 
2P . 

 

Let x  not efficient solution for 
3P , then there exist **x M  such that **( ) ( ),  x x   

**( ) ( )x x  . 

Since M  is a convex set, then from convexity there exist x M , such that 
**(1 )  ,  0 1x x x        

Let ( )x  is a convex set , then from convexity ,we get 
**( ) (1 ) ( )  ( )x x x       , 

at 0  , we get 

( ) ( )x x   

Which contradict the assumption, hence x  efficient solution for 
3P . 

 

4. The algorithm 

 
From the previous discussion, the proposed algorithm proceeds as follows 

 

Step1: 

Construct two auxiliary problems  
2P and 

3P  from 
1P as following: 

     
2 3

 ( )  ( )

.    ,  .      

: 0, 1,2,..., : 0, 1,2,...,

Min x Max x

P s t P s t

n nM X R g x r m M X R g x r m
r r

 

 
 
 
 
 
        
 

 

Step2: 

Solve the problems 
2P and 

3P , get the set of all efficient solutions *

1M and *

2M  for 
2P and 

3P respectively 
* *

1 2{ : },  { : }M x x M M x x M    . 

 

Step3: 
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If * *

1 2M M , then the set of all efficient solution *M for 
1P is * * * *

1 2 1M M M M    , and 

the efficient solution is x . Otherwise go to step 4. 

 

Step4: 

If * *

2 1M M , then the set of all efficient solution *M for 
1P is * * * *

1 2 1M M M M    , and 

the efficient solution is x . 

 

Step5: 

If * *

1 2M M   , then the set of all efficient solution *M for 
1P is * * *

1 2M M M  , and the 

efficient solution is *x . 

 

5. Illustrative examples 
 

Example 1 
2

2 21

1 ( 3) 1
 ,  

( 2)x

x x
Min

x x

   
 

 
 

Solution Steps: 
Step 1: 

2 2 2

2 3
1 1

( )  { { 1,( -3) 1}},     ( )  { {( - 2) , }}
x x

P Min x x P Max x x
 

   

 
Step 2: 

* *

1 2{ :1 3},     { :1 2}M x x M x x      

Step 3: 
* * * *

1 2 1M M M M  is 
1Pfor *Mthe set of all efficient solution then , 

* *

2 1M MSince  

* { :1 3}M x x   , then 

 

Example 2 

2

1

1 ( 3) 1
 ,  

2x

x x
Min

x x

   
 
 

 

Solution Steps: 
Step 1: 

2

2 3
1 1

( )  { { 1,( -3) 1}},     ( )  { { ,2 }}
x x

P Min x x P Max x x
 

    

  Step 2: 
* *

1 2{ :1 3},    { : 1}M x x M x x     

Step 3: 
* * * *

1 2 1M M M M  is 
1Pfor *Mthe set of all efficient solution then , 

* *

1 2M MSince   

* { :1 3}M x x   , then 

 

Example 3 

2

21

1 ( 3) 1
 ,  

2x

x x
Min

x x
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Solution Steps: 
Step 1: 

2 2

2 3
1 1

( )  { { 1,( -3) 1}},     ( )  { { ,2 }}
x x

P Min x x P Max x x
 

   

Step 2: 
* *

1 2{ :1 3},    { : 2}M x x M x x     

Step 3: 
* * * *

1 2 1M M M M  is 
1Pfor *Mthe set of all efficient solution then , 

* *

2 1M MSince  

* { :1 3}M x x   , then 

 

Example 4 

2 2

21

( 2)
 ,  

1 ( 3) 1x

x x
Min

x x

 
 

   
 

 

Solution Steps: 
Step 1: 

2 2 2

2 3
1 1

( )  { {( 2) , }},    ( )  { { 1,( 3) 1}}
x x

P Min x x P Max x x
 

     

Step 2: 
* *

1 2{ :1 2},    { :1 3}M x x M x x      

Step 3: 
* * * *

1 2 1M M M M  is 
1Pfor *Mthe set of all efficient solution then , 

* *

1 2M MSince   

* { :1 2}M x x   , then 

Example 5 

1 5

1
 ,  x

x
Min

x 

 
 
 

 

 

Solution Steps: 
Step 1: 

2 3
1 5 1 5

( )  { {1, }},    ( )  { { ,1}}
x x

P Min x P Max x
   

 

Step 2: 
* *

1 2{ : 1},    { : 5}M x x M x x    

Step 3: 
* * *

1 2M M M is 
1Pfor *Mthe set of all efficient solution then , 

* *

1 2M M   Since  

* *{ :1 5}M x x   , then 

 

6. Conclusion 
In this paper, a new approach for finding all efficient solutions for multi-objective fractional 
programming problems is presented. This approach based on solving auxiliary problems in 
which minimize the numerator and maximize the denominator. Illustrative examples are 
presented to clarify the obtained results. 
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